Chi-Quadrat-Test der Anpassungsgüte

Der Chi-Quadrat-Anpassungstest ist eine Variation des allgemeineren Chi-Quadrat-Tests. Die Einstellung für diesen Test ist eine einzelne kategoriale Variable, die viele Ebenen haben kann. In dieser Situation denken wir oft an ein theoretisches Modell für eine kategoriale Variable. Durch dieses Modell erwarten wir, dass bestimmte Anteile der Bevölkerung in jede dieser Ebenen fallen. Ein Anpassungstest bestimmt, wie gut die erwarteten Anteile in unserem theoretischen Modell mit der Realität übereinstimmen.

Null und alternative Hypothesen

Die Null- und Alternativhypothesen für einen Anpassungstest sehen anders aus als einige unserer anderen Hypothesentests. Ein Grund dafür ist, dass ein Chi-Quadrat-Anpassungstest eine nichtparametrische Methode ist. Dies bedeutet, dass unser Test keinen einzelnen Populationsparameter betrifft. Die Nullhypothese besagt also nicht, dass ein einzelner Parameter einen bestimmten Wert annimmt.

Wir beginnen mit einer kategorialen Variablen mit n Ebenen und lassen pich der Anteil der Bevölkerung auf der Ebene sein ich. Unser theoretisches Modell hat Werte von qich für jedes der Proportionen. Die Aussage der Null- und Alternativhypothese lautet wie folgt:

  • H0: p1 = q1, p2 = q2,… Pn = qn
  • Hein: Für mindestens eine ich, pich ist ungleich zu qich.

Tatsächliche und erwartete Anzahl

Die Berechnung einer Chi-Quadrat-Statistik beinhaltet einen Vergleich zwischen der tatsächlichen Anzahl von Variablen aus den Daten in unserer einfachen Zufallsstichprobe und der erwarteten Anzahl dieser Variablen. Die tatsächlichen Werte stammen direkt aus unserer Stichprobe. Die Art und Weise, wie die erwarteten Zählwerte berechnet werden, hängt von dem speziellen Chi-Quadrat-Test ab, den wir verwenden.

Für einen Anpassungstest haben wir ein theoretisches Modell, wie unsere Daten zu proportionieren sind. Wir multiplizieren diese Anteile einfach mit der Stichprobengröße n um unsere erwarteten Zählungen zu erhalten.

Computing-Teststatistik

Die Chi-Quadrat-Statistik für den Test der Anpassungsgüte wird durch Vergleichen der tatsächlichen und der erwarteten Anzahl für jede Ebene unserer kategorialen Variablen ermittelt. Die Schritte zum Berechnen der Chi-Quadrat-Statistik für einen Anpassungstest lauten wie folgt:

  1. Subtrahieren Sie für jedes Level die beobachtete Anzahl von der erwarteten Anzahl.
  2. Quadrieren Sie jeden dieser Unterschiede.
  3. Dividieren Sie jede dieser quadratischen Differenzen durch den entsprechenden erwarteten Wert.
  4. Addieren Sie alle Zahlen aus dem vorherigen Schritt. Dies ist unsere Chi-Quadrat-Statistik.

Wenn unser theoretisches Modell perfekt mit den beobachteten Daten übereinstimmt, zeigen die erwarteten Zählungen keinerlei Abweichung von den beobachteten Zählungen unserer Variablen. Dies bedeutet, dass wir eine Chi-Quadrat-Statistik von Null haben werden. In allen anderen Situationen ist die Chi-Quadrat-Statistik eine positive Zahl.

Freiheitsgrade

Die Anzahl der Freiheitsgrade erfordert keine schwierigen Berechnungen. Alles, was wir tun müssen, ist eine von der Anzahl der Ebenen unserer kategorialen Variablen abzuziehen. Diese Zahl gibt uns Auskunft darüber, welche der unendlichen Chi-Quadrat-Verteilungen wir verwenden sollen.

Chi-Quadrat-Tabelle und P-Wert

Die von uns berechnete Chi-Quadrat-Statistik entspricht einer bestimmten Position in einer Chi-Quadrat-Verteilung mit der entsprechenden Anzahl von Freiheitsgraden. Der p-Wert bestimmt die Wahrscheinlichkeit, eine so extreme Teststatistik zu erhalten, unter der Annahme, dass die Nullhypothese wahr ist. Wir können eine Wertetabelle für eine Chi-Quadrat-Verteilung verwenden, um den p-Wert unseres Hypothesentests zu bestimmen. Wenn statistische Software verfügbar ist, kann diese verwendet werden, um eine bessere Schätzung des p-Werts zu erhalten.

Entscheidungsregel

Wir entscheiden, ob die Nullhypothese aufgrund eines vorgegebenen Signifikanzniveaus abgelehnt wird. Wenn unser p-Wert kleiner oder gleich diesem Signifikanzniveau ist, lehnen wir die Nullhypothese ab. Andernfalls lehnen wir die Nullhypothese nicht ab.